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Abstract

A recursive technique for modeling and estimating a two-dimensional signal
contaminated by noise is presented. A two-dimensional signal is assumed to be an
undistorted picture, where the noise introduces the distortion. Both the signal and
the noise are assumed to be wide-sense stationary processes with known statistics.
Thus, to estimate the two-dimensional signal is to enhance the picture.

The picture representing the two-dimensional signal is converted to one dimen-
sion by scanning the image horizontally one line at a time. The scanner output
becomes a nonstationary random process due to the periodic nature of the scanner
operation. Procedures to obtain a dynamical model corresponding to the auto-
correlation function of the scanner output are derived. Utilizing the model, a
discrete Kalman estimator is designed to enhance the image.

vi JPL TECHNICAL REPORT 32-1596



Two-Dimensional Signal Processing With
Application to Image Restoration

I. Introduction that of the scanner output in the statistical sense. The
image is two-dimensional, while the scanner output is

In theory, image enhancement utilizing classical filter- one-dimensional; thus, the model must exhibit the vertical

ing techniques does not seem to be difficult, since the correlation of the image. This correlation will be revealed

processing of signals in one dimension can usually be by the oscillatory nature of the model responses.

extended to a two-dimensional case (using the concept

of linear system theory). However, the application iscumbersome and often becomes impractical when a large It is assumed that the image is characterized by a sta-
cumbersome and often becomes impractical when a large tinrwodmsoaluocreto fcin.H -
amount of data is to be processed. Thus, it seems desir- tionary, two-dimensional autocorrelation function. How-
able in many situations that a recursive technique of ever, the scanner output, denoted by s(t), is nonstationary

iabl enhancement be developed, and nonseparable (Ref. 1) because of the scanner's periodic
image movement. Consequently, no finite dimensional linear

In this report, we shall consider those images that are dynamic model representing s(t) exists. To remedy the

distorted by random noise and are best characterized by nonseparability of the nonstationary process. s(t), which
is a very undesirable situation (Ref. 1), we shall generate

statistical procedures, such as specifying their first two is a very undesirable situation (Ref. 1), we shall generate
. a stochastic process whose autocorrelation function is

statistical moments associated with the random process a stochastic process whose autocorrelation function is

representing the brightness level. Thus, in this case, the stationary and which approximates the autocorrelation

image enhancement becomes a problem of statistical esti- function of s(t).

mation and filtering, and to enhance a distorted image is
to estimate the image. The input to the estimator is the Since we shall be dealing with the question of reali-

output of a horizontal line scanner scanning the image zation of autocorrelation functions and thus spectral fac-

with uniform speed. The procedure is first to develop a torization, a brief background of spectral factorization

dynamical model whose response characteristic matches is presented.
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A. Spectral Factorization with degree less than or equal to n - 1 and all roots in
the left half of the s-plane, where a, and 3p are the real

The concept of spectral factorization has become in- ef has of i pl an er
coefficients. That is, H(s) has all of its poles and zeros increasingly more important since Weiner's original work the left half of the s-plane.

(Ref. 2) on the subject. Basically, spectral factorization

determines the equations that describe a linear system
when the system is driven by white noise and the covari- B. Determination of the Output Covariance From a
ance of the output is known. Whenever the covariance Linear Dynamical Model
function of a process is driven by white noise via a sys- Consider the following dynamical model, given by
tem of differential equations of first order, we refer to this
system as a dynamical model. More specifically, given a x = A(t)x(t) + B(t)u(t)
covariance function R(t, T), where t t, and r- r, for
some fixed t, and 71, the factorization problem is to deter- y(t) = C(t)x(t) (2)
mine a realizable linear filter (differential equation model) here x(t) is an n vector, u is an m vector, y is a
that, when driven by white noise, yields R(t, T) as its out-y is a
put covariance scalar, A, B, and C are matrices of appropriate dimen-

put covariance. sions (not necessarily time-invariant), and u(t) is a zero-
mean white noise vector, such that

It is well known (Ref. 1) that, in general, no such reali-
zation may exist. However, if its existence were guaran- Eu(t)u'(T) = KS(t - 7) (3)
teed, the representation (in some sense) would be unique
(Ref. 3). In its most popular form, the spectral factoriza- where K is an m X m symmetrical matrix and prime de-
tion would be confined to stationary situations. Then the notes the transpose.
corresponding dynamical model under consideration
would be time-invariant, and the white noise forcing It is desired to calculate the output covariance (an
function must have started infinitely in the past (Ref. 3). autocorrelation, since y(t) is of zero mean) Ey(t)y(r),
This dynamical model would be asymptotically stable given by
(Ref. 3). It is also desirable to deal with finite-dimensional
dynamical models, implying that each linear model must Ey(t)y(r) = C(t)Ex(t)x'(r)C'(r) (4)
possess a rational bilateral Laplace Transform. We can
summarize the above discussion by the statement of Let the random variable x(to), where to is the initial time,
Theorem 1, which we shall not prove (Ref. 4). be statistically independent of u(t). It is well known (Ref.

5) that the solution of x(t) is given by

Theorem 1
x(t) = *(t, t0 )x(t0 )+ (,)Brurd (5A necessary and a sufficient condition that a stationary (t) = (t, to)X(to) + Jt.(t,)()()d

process y(t) be representable as the output of an asymp-
totically stable, time-invariant, finite, dimensional linear where 4(t, 7) is the state transition matrix; i.e.,
model is that its spectral density R(s) be a rational func-
tion of the form H(s)H(-s), with ae(t, T) A

_ t - A(t) '(t, 7) (6)

M(s)H(s) = (1) ((t, t) = 1 (7)

for some polynomial Substituting x(t) from Eq. (5) into (4) and performingfor some polynomial
some mathematical operations, we obtain (Ref. 3)

n-1

p(s) = sn + E &asi Ey(t)y(r) = C(t)4(t, T) P,(T) C'(r)1(t - 7)
i =0

+ C(t)P,(t)4'(t, ') C'(t)l(r - t) (8)
with all roots in the left half part of the s-plane and

P.,(t) = Ex(t)x'(t) (9)
n-1

M(s) =o s, where 1(t) is a unit step function.

2 JPL TECHNICAL REPORT 32-1596



From the dynamical model (Eq. 2), P,(t) can be shown II. Recursive Image Estimation
to be the solution of the differential equation (Ref. 3) A. Procedure OutlineA. Procedure Outline

S= AP., + P.,A' + BKB' (10) The enhancement of images that are characterized only
by statistical data where the picture contains additive

where the covariance P,(to) must be given, noise is considered in this section. The random process
representing, the output scanner is characterized by the

. output of a dynamical model with white noise input. The
C. Independence of Estimation Problem of a dynamical model describes the first-order vector Markov

Particular Coordinate System process. The procedure of Kalman filtering is then utilized

In spectral realization, y(t), given by Eq. (2), is the to recursively determine the minimum mean-square error
signal without any noise contamination. Often, we receive estimate of the image. The result is also extended to ob-
a contaminated observation z(t), given by tain the smoothing of data. Two examples (Ref. 7), one

with very high SNR, are used to illustrate the effective-
z(t) = y(t) + n(t) (11) ness of the procedure. In what follows, the image is

assumed to be a two-dimensional, stationary correlation
where n(t) is additive noise which is assumed to be un- function of zero mean. Thus, the autocorrelation function
correlated with y(t). Kailath (Ref. 1) and Anderson (Ref. and the covariance become identical. The statistical in-
6) show that the only information necessary for recursive formation about the image and the noise is assumed to
estimation is the knowledge of Ey(t)y(t + 7) and Ez(t) be known and uncorrelated, and the noise is additive.
z(t + 7). That is, the solution of recursive estimation in
the mean-square sense is independent of the particular
coordinate system for model z(*) and y(-) processes; hence, B. Derivation of Autocorrelation Function
a unique solution associated with minimum mean-square of Scanner Output
estimation can be obtained where the models for the
processes are not given in advance. All these models are Let us scan a picture horizontally using an optical
related to one another by a linear transformation. For scanner denoted by s(t). Let the horizontal position (a
example, if continuous variable) be denoted by z, where 0 & z Z,

and the vertical variable by an integer n = 1, 2, ... , N
x = Ax(t) + Bu(t) representing the nth scanned line. The brightness func-

y = Cx(t) + v(t) (12) tion is defined by b(z, n). Let us assume, without any loss
of generality that b(z, n) is of zero mean. The random

and process b(z, n) is assumed to be wide-sense stationary,
with the autocorrelation function defined by

x* = A*x*(t) + B*u*(t)
y = C'x°(t) + v(t) (13) Eb(z2, n2)b(z,, n,) - R(z 2 - z 1, n2 - n) - R(z, n)

correspond to the same realization, then there exists a (16)
linear transformation T(t) such that

Assume that the scanner output s(t) has a horizontal
x*(t) = T(t)x(t) (14) speed v = 1 and, without any loss of generality, that the

and vertical movement takes zero time. Let us determine
Es(t)s(t + T) in terms of R(z, n) and Z. The variables t and

x = T(t)T(t) (15) can be equivalently expressed by

where X^ and ^* are the estimates corresponding to Eqs.
(12) and (13), respectively. t = iT + -y, i = 0,1,, , , N - 1, 0 - T

1* = iT + ,, i .... , - 1, O, 1, -.
The covariance estimates can be obtained accordingly. 0 t + r5 NT, 0 ~ y T (17)
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where T = Z is the time required to traverse one hori- Next, we must prove that Eq (t) q (t + ) is a function

zontal line. The scanner output can now be written as of T (or equivalently, y) only. To accomplish this end, we
calculate the correlation function of the process q (t):

I b( +y, i+j+1)
if + y T Eq(t) q(t+r)= EE, [s(jT + )s(T+ 4 + iT+y)]

s (t) = b (, j + 1), s (t + ) = b (a + - T, i + j + 2) = E, [s (jT +)
if ,+y>T 0

(18) X s (T + + iT + y)] d (21)

This equation is obtained by utilizing Eq. (20) and

Now, utilizing Eqs. (16) and (17), we can obtain T = iT + -, which is given by (17), and the fact that 4 is
uniformly distributed over [0, T]. The subscripts s and

(,i) in (21) denote the expectation with respect to s and 4,

E tt +7) i T respectively. From Eqs. (19) and (21), one obtains
Es (t) s (t + 7) = R(+/-Ti+ 2

11(o. ±y-T,i j2)1 Ff-yS f + y > T 2) Eq (t) q (t + 7) [- R (-y, i) de

(19) fi 1+ R(T-,,i+1)de

It is clear that Es (t) s (t + 7) is a function of both a and
y, or equivalently, of t and T; thus, it must be nonstation-- ' R(y, i) + R (T - y, i + 1) = r (7)

ary. The nonstationarity is due to the edge condition. A (22)
simple check shows that Es (t) s (t + r) is also periodic
and a nonseparable function. It can be demonstrated that where Eq (t) q (t + 7) is defined as r (r), which is a func-
no finite-dimensional linear realization of this nonsepara- tion of r (or y) only.
ble autocorrelation exists (Ref. 3).

It is interesting to note that the correlation function of

We shall now seek to generate a random process de- q (t), namely r (7), can also be obtained by averaging the

noted as q (t) such that it has a stationary autocorrelation autocorrelation function of s (t) over one period. How-

function which approximates the autocorrelation of the ever, it is important to mention that such averaging over

process s (t). To generate q (t), we proceed as follows. For the subintervals of a period may not give rise to a sta-

a given t, q (t) is defined by tionary autocorrelation function, and furthermore, it may
not yield an autocorrelation function at all.

q (t) = s (fT + 4) (20)q (t) = s ( (20) As an example, consider a scalar random process char-
acterized by a scalar differential equation

where e is assumed to be uniformly distributed over acterized by a scalar differential equation

[0, T]. Now we shall prove the following theorem (Ref. 8). = -x + u

Theorem 2 y (t) = cos (t) x (t)

The random process q (t) defined by Eq. (20) is sta- where the initial state x (0)= 1/2 and

tionary. Eu (t) = 0

Proof Eu (t,) u (t.) = 8 (t2 - t,)

It is easy to verify that Then, the autocorrelation of x (t) can be obtained as

follows:
Eq (t) = 0

1

by the construction of q (t). Ex (t) x (t + ) = exp (- I )
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Thus, Ey (t) y (t + -) is given by resulting in a zero mean sample function. As a first approxi
mation, let us choose

1
Ey (t) y (t + r) = cos (t) cos (t + T) exp(- ITI) R (x, i) = a exp (- h z I - il)

which is clearly nonstationary, since the correlation func- where a, [;,, and /, are to be determined. Computation

tion of y (t) depends on both t and t + r and is periodic of the sample power results in a = R (0, 0) 6.1. The cor-

(of periodicity 2wr). However, if we averaged this auto- relation between two adjacent grid points is calculated as

correlation over [0, 7r/4], the resulting average would 5.33, which is a value for R (1/32, 0) or R (0, 1). Hence,

depend on both t and t + r.
R (x, i) = 6.1 exp (-4.851z I - 0.1861il)

The randomization of over the period T has the intui-
tive appeal that all points of the picture are weighted The correlation function is obtained by substituting the

equally. above into Eq. (22), and the plot is shown in Fig. 1.

The following salient properties of r (7) will be used in C. Dynamical Modeling of Image Statistics
what follows: In this section, we wish to derive a differential equa-

r (iT) = R (0, i) (23) tion model whose solution has an autocorrelation func-
tion approximating r (7) given by Eq. (22). Since we

Since R (z, n) is an autocorrelation function, subsequently intend to utilize a Kalman estimator, we
seek a dynamical model of the form

R (o, n) R (z, n) (24)R(0,n) (zn) (24) (t) = Ax (t) + Bu (t)

Thus, from (22) and (23), y (t) = Cx (t) (26)

r (iT + y) 1 for all i, y (25) where x(t) is an n-dimensional vector, u(t) is a white
r (iT) noise vector, and y (t) is the scalar signal whose autocor-

relation function is r (7).

The above properties indicate that, in general, the corre- relation function is r().

lation function r (r) has a periodic nature. The procedure followed is to represent an approxima-

tion to r (7), denoted by r, (T), as a sum of terms such that
Example 1 each term can be easily modeled, since, in general, r (r)

Consider a square picture subdivided into a 82 )< 32 may not have a rational bilateral transform. The proper-

grid. Let T = 1 second and v = 1. The signal is a 12 X 12 ties of r (7) may be utilized to decompose r (7) into the

square starting at the 18th row and 13th column. Let m product of two functions h (r) and r (r)/h (T):
and n represent specific rows and columns, respectively.
The above signal is represented by the brightness level _ r (7) (27)

_(_) h (7 ) (7
b (m, n) =6.1 where the signal exists and -1 otherwise, h (7)

Sr(r)

6.1

-T -T/2 T/2 T 7

Fig. 1. Plot of r(r) and ra(r) (dashed curve) as a function of 7
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where h (7) is chosen to satisfy which will be of first order. If the white noise forcing
functions (one being necessary for each i, j pair) are
chosen to be mutually independent, the collection of all

h (iT) = R (0, i); for all i (28) these differential equations defines the parameters A, B, C
and represents the desired model for r, (7).

Since, in many practical cases, the two-dimensional
correlation function R (z, i) is a monotonically decreas- In the course of selecting the approximate function
ing function of i, a natural candidate for h (7) is, in those ra (r), we must choose the coefficients properly, such that
instances, a combination of negative exponentials; i.e., ra (T) is a correlation function. We shall either guarantee

that ra (*) is a positive definite function or equivalently,
that the spectral density of r, (r) is positive (Ref. 9).

I

h(r)= lexp(-Aixjr) (29)
-~l Example 2

Using example 1, let us derive a dynamic model for
The function p (r) is then chosen to be a periodic func- r (7). Assume that the desired model has the form given
tion approximating r (r)/h (7). The approximate correla- by Eq. (26), and further, that
tion function is

Eu (t) u (t + 7)' = KS (7) (83)
re (r) = h (T) p (r) (80)

where 8 (r) is the dirac delta function, the prime denotes

Utilizing Eqs. (23) and (28), it can be seen that the func- the transpose, K is a positive definite matrix, and
tion r (r)/h (7) is unity at iT and less than unity for all
other T; furthermore, from (22) and (29), it is an even Ey (t) y (t + 7)= ra (r) (34)
function. Hence, p (7) is chosen to be an even function
with period T. Thus, a natural candidate for this func-
tion is Because of the exponential nature of R (z, i), we choose

Jacos 24 h(7) = R(0,0) exp(-0.1361r ) (35)p (r) = ] ai cos T(31)
j=0

and

Consequently, an element of the function rTa (r) has the
form p(r) = ] ai cos 274r (36)

j=o

liai exp (-A, I T) O S 7r (32) In this example, we use the notation i, instead of 0.136.

and there are (I + 1) 1 such elements. The modeling procedure can be broken down as fol-
lows. The first term r (7), namely,

A differential equation model with white noise input ao exp ( 1v 71)
can be simply constructed (Ref. 8) to model each of these
terms. Each will be a second-order system except for has the bilateral transform
those corresponding to j = 0; i.e., has the bilateral transform

2ta - R(s) (37)
lao exp (-A | I ) (s + t) (s -,(s)

6 JPL TECHNICAL REPORT 32-1596



The function R, (s) can now be factored into two func- where the superscript denotes the model corresponding
tions, H1 (s) and H, (-s), where to the appropriate term. The coefficients AM), BM), and

C ( 2 ) are given as

R, ( 2os) 2a1 0 1R1  (s + A ) (s -  2,,) A) =

S(2w)2 + t -21v
and

B (2)a 
-

V 2a0 sp 2_aIM[ (2 r) -2A

H (s) = + C (2 ) = [1 0]

Utilizing the method of Section II, a dynamic realization In general, the (K + 1) term of r(r) is akexp(- ,|T)

of H, (s) is obtained as (Ref. 10) cos 2rkr has the bilateral transform Rk+ (s), given by

1 = - ,xo(t) + 2 aoM u,(t) 2ak,[-s2 + (2k) 2 + ,]

y(t) = x(t) (88) Rk,+l(s) = [(s + 4)2 + (2kr)2 ] [(-s + ) + (2kr)2]

(39)
The second term of r(), namely,The second term of r(T), namely, As before, the function Rk+l(s) can be factored into two

a, exp (- Jr 1) cos 2, functions, Hk+(s) and Hkx(-s):

2, vo[s + Nr (2k. ) V ]
has the following bilateral transform: Rk±1(s) = (s + t) 2 + (2wk) 2

_2a 2[-s + (2) +] x 2a , s [ - s+ (2k )+2

R 2(8) = +(2 x S + IIV_2 + (2k 7r)2[(s + _V)2 + (2)2] [(-s + )2 + (2.)] (-s + (k)

where
The function R 2(s) can be factored out into two functions,
H 2(s) and H2(-s): Ha( S + (2kr)2 +

Hkl(s) (S + A,) 2 + (2kr)2

-2 alpj[s + V (2)2 +24]
R2(s) (S 2 ) + (2r)2 and the corresponding dynamical model is

V2-,-,[ -s + V (2)2 _ /
X (S + t) 2 + (2r)2 tV2  (k+1) = A (k+1)x(k+)(t) + B(k+1)u(k+1)(t)

Y(k+1)(t) = C(k+1)xk+)(t) (40)

where H 2(s) is given by
where

H(s 2as x [s + (2)+ 0  1 41
H2 (S) (s + )2 + (2 .)2 A (+1) -(2k) + (41)

The corresponding dynamic realization of H 2(s) is given

as B (42)[(I2k\2+ j. 21- (42)
j(2) = A( 2 )x(2

)(t) + B( 2
) U( 2

)(t) 2 2

y( 2)(t) = C(2)x(2)(t) C(k+1) = [1 0] (43)

JPL TECHNICAL REPORT 32-1596 7



It can be seen that the first term of r. (r) is modeled by (21 + 1)-order system. For example, suppose the func-
Eq. (38), which is a first-order system, and the subse- tion r, (T) has (1 + 1) terms, then we can incorporate the
quent terms by (39), which is the second-order system. first- and second-order systems into a new system, whose
Thus, to model the (1 + 1) terms of r,(r), we need a parameters A, B, and C are obtained as follows:

- V 0 0 0 0

0 0 1

0 - [()2 + ,2] -2/4

0 0 0

A = * (44)

0 0 0 0 1

0 0 0 -[(2,r(J + 1))2 + P] 
2

Mv

- 2a0o, 0 0

0 V O2a _ 0

B = 0 (45)o

N" 2ajV

S0 0 2 [ (Z ,J1)2 + T2 - 21

C=[1 1 0 1 0 ......... 1 0] (46)

Example 3 The second term in the correlation is modeled by

If in example 2 only three terms of r0 (T) are retained,
i.e., 1 = 2, the resultant r, (r) can be written as x2 = x3 + 0.82u 2

i = - 89.4 x2 - 0.27 x, + 4.92 u2
r. () = 6.1 exp -0.136 (r) E aj cos 2rr

j=0
and the third term is modeled in a similar manner. The

If we use the Fourier series for p (r), then ao, a1 , and a2  terms U, u, and u represent independent white-noise
willbe ive asterms U1, U2, and %s represent independent white-noisewill be given as

terms, each with zero mean and correlation function 8 (7),

a = 0.333; a = 0.405; a = 0.101 where 8 is the dirac delta function. The final results are:ao = 0.333; a1 = 0.405; a2 = 0.101

A plot of ra (r) is shown in Fig. 1. The correlation term -- 0.136 0 0 0 0

6.1aoexp(-0.13611) 0 0 1 0 0

A 0 -39.4 -0.27 0 0
is modeled by 0 0 0 0 1

S= -0.136 x, (t) + 0.732u 0 0 0 -157.7 -0.27

8 JPL TECHNICAL REPORT 32-1596



0.743 0 0 - To minimize _I (r), we must minimize

0 0.820 0

B = 0 4.92 0 [ -r (r)]2 dr

0 0 0.410

0 0 5.04 Thus, the minimization of LI (r) becomes a simple prob-
- lem, and the risk function can be obtained from Ref. 11.

C = [1 1 0 1 0] The procedure is to set the derivatives of _( (r) with re-
spect to aj equal to zero, and the result can be obtained
as follows (Ref. 11):

Often, two-dimensional stationary correlation functions as follows (Ref. 11):

can be approximated by a combination of two-dimensional a = a-ld (52)
stationary correlation functions of the form

R(xi)=R(0,0)exp(-hx- i (47) where a is a matrix, whose elements are given byR (x,i) = aR(0, 0) exp (- th I - v l (7

Because of the importance of R (x, i) as given by Eq. (47), a = exp (-2p. , I) cos 2,kr cos 27rlr dr
we shall discuss this special autocorrelation function
below. (53)

Calculating r (r) (given by Eq. 22), one obtains and d is a column vector, whose elements are given by

T - exp(-hy-Vi) dk = r(r)exp(-Irl)cos2rkrdr (54)
r T) exp( -'hj|y) -P..|ij)

T

+ -exp(-Ph IT-yI -pr ,,i+ 11) (48) Furthermore, the following properties can easily be
established:

where

r =iT + 7, O ~y T [r r ( T)-ra(r)] dr= r2(r) - r, () dr

(55)
Now, let us define a risk function _R (*) such that

NT r2 (r) d = lim r (7) dr (56)
(r) = [r (T) - r. (,)]' dT (49) J 0

and

and 2 ex ( - r)o 2 r (4) III. Design of the Estimator
r. (T)= Eaiexp(-, |)co CO T7- (50)

j=o A. Design of a One-Step Predictor

We can select the coefficients aj such that the risk func- Since we intend to utilize a digital computer for the
tion Q (r) is minimized. For simplicity, we shall assume estimation process, the model given by Eq. (26) is dis-
that T = 1. It can be shown that 9Z (r) can be expressed cretized, yielding
by (Ref. 11)

1 - exp (-2PN) [r () - rx (k + 1) = Ax (k) + Ru (k)
S(r) = - -[r-r (o

(51) y (k) = Cx (k) + v (k) (57)
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In addition, the model given by Eq. (57) contains the x(k + 1)= [A - F (k)C] 2(k) + F (k) y (k)
observation noise element v (k), which is assumed to be P(k + 1) = [A - F (k) C] P (k) [A - F (k) ]'
white, with mean zero and variance a2 . The parameters
A, B, and C are related to A, B, and C by (Ref. 10) + ' + F (k) F' (k) 2

e T F (k) = P (k) C' [CP (k) C' + 2 -1 (59)

A = exp(A-'
A N The (one-step predicted) estimate of the image is there-

fore

BKB' =f exp A )exp(-As)BKB' Cx(k) - (k)

Xexp(-A's)exp A'T ds that is, (k) is the best estimate of y (k), obtained recur-
sively in real time, where y (k) is the observation associ-

C= C (58) ated with the grid point immediately ahead of the scanner
position.

where K and K are covariances of u (t) and u (k), respec- Example 5
tively. The sampling interval utilized in the above dis-
cretization is chosen to be T/N. Thus, there will be N The signal y (k) is generated by using the image de-
observations for each horizontal scan. Since there are scribed in the preceding example and adding white noise
N horizontal scan lines, the final discrete observation is with variance a2. Let us define a measure of signal-to-
on an N X N grid. noise ratio by

Speak-to-peak variation of signal
Example 4 a

Continuing example 3, we obtain The peak-to-peak variation of the image is 7.1. Two
values of p are considered here, namely 7.1/3 and 7.1/10;

0.996 0 0 0 0 the corresponding values of y (k) and their one-step pre-

0 0.983 0.031 0 0 dicted values y (k) are shown in Figs. 2a and b and 3a
and b, respectively.

A= 0 -1.22 0.97 0 0

0 0 0 0.926 0.03 B. Implementation of Required Interpolation

0 0 0 -4.77 0.913 It is clear that image enhancement, from the point of
view of scanner output, represents an interpolation prob-

0.02 0 0 0 lem; i.e., it is desired to determine the best estimate of
y (k), 0 k N, given the observation y (0), y (1),- --, y (N).

0 0.02 0.12 0 In general, the interpolation problem is far more compli-
cated (Ref. 10) than standard Kalman filtering. However,

3KB' 0 0.12 0.60 0 since for the image enhancement considered here the

0 0 0.01 0.07 length of the data is fixed (N) and, furthermore, the ob-
servation is usually available for additional repeated

0 0 0.07 0.49 processing, it is possible to obtain two one-step predicted
values of y (k), denoted by '(k) and V(k), one by running
the scanner in one directiori starting, for example, at the

=C[1 1 0 1 0] top left corner of the picture and the other by running
the scanner in the reverse direction starting at bottom

Utilizing the model given by Eq. (57) with parameters right corner. Associated with these estimates are estima-
given by Eq. (58), a (one-step predictor) recursive esti- tion error variances denoted by ^2 (k) = CP (k) C' and
mator may be designed (Ref. 10). The equations are given -2 (k) = CU (k) C', respectively. The two estimates must
for the sake of completeness. be combined to yield the optimal interpolated (smoothed)

10 JPL TECHNICAL REPORT 32-1596
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G01NAL PAGE 18 00

(a) (b)

(c) (d)

Fig. 2. Observation and estimates for p = 7/3

value y*(k). Thus, a brief discussion of combining two In this case, the optimal estimate of x, denoted by x* (t),
estimators is warranted. is given by

x= P. (P-- + ?-l-) (61)Suppose we are given two state estimates, 5(t) and

Y(t), of the same state variable x (t). There are two cases
to consider; either T(t) and Y(t) are correlated or they = (P- + P-')- (62)
are uncorrelated. We shall combine only the case in
which both are uncorrelated; i.e., where P and P are the error covariances of 2 and , re-

spectively. Thus, applying Eqs. (60), (61), and (62) to
E [x - x] [x - ]' = 0 (60) obtain Y (k) = C and = G? yields

JPL TECHNICAL REPORT 32-1596 11



(a) (b)

(c) (d)

Fig. 3. Observation and estimates for p = 7/10

y*2 ((k) (k) + (k) y* (k) [(k) + W(k)] (64)
y 0" (k) + -2 

(k )  + (k) +V(k) )

(63) Equation (64) was implemented, and the results for p
7.1/3 and 7.1/10 appear in Figs. 2c and 3c, respectively.

Example 6

Considering the preceding example, the covariance Careful observation of Figs. 2b and c (or Sb and c)
P (k) in Eq. (59) nearly reaches its steady-state value in reveals a consistent vertical correlation, which is attrib-

about two or three scan lines. Consequently, ^(k) 7 3(k) uted to the approximation of r (r) by ra (r) (Fig. 1). The
for most of the picture, and Eq. (63) reduces to effect of this approximation is partially eliminated by

12 JPL TECHNICAL REPORT 32-1596



transposing the original picture and re-evaluating y* (k). is applicable to those images characterized statistically
The two values are then averaged and represent Figs. 2d by means and correlation functions. It is important to
and 3d for corresponding values of p. note that the required computational time increases only

linearly with the size of the picture (number of scan lines,
number of discrete observations per line). A time-invariant

IV. Conclusion dynamical model was chosen, leading to stationary sta-
tistics for the scanner output.

The feasibility of applying recursive (Kalman) filtering tistics for the scanner output.

techniques to image processing has been established.
Thus, the estimate at any one point does not require Improved performance is expected if the nonstation-

processing of all the data but only of the information arity due to the scanner's periodic operation is considered.

stored by the point preceding it. The recursive procedure This improvement will be discussed in a later publication.
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